MA61028: Boundary Integral Methods

From Metakgp Wiki
Jump to navigation Jump to search
MA61028
Course name Boundary Integral Methods
Offered by Mathematics
Credits 4
L-T-P 3-1-0
Previous Year Grade Distribution
3
2
2
6


2


EX A B C D P F
Semester Spring


Syllabus

Syllabus mentioned in ERP

Prerequisite: Partial Differential EquationsGreen s function of Laplace equation in 1-d, 2-d and 3-d; Green s function of Helmholtz equation; Integral representation, Hypersingular integrals; Boundary element discretization; Generalized single and double layer representations; Boundary element collocation method, higher order collocation methods; Three node flat triangles, six node curved triangles; Inhomogeneous, nonlinear, and time dependent problems; Applications in axisymmetric fields, viscous flows, Navieer â Stokes and non-Newtonian flows; BEMLIB exercises.


Concepts taught in class

Student Opinion

How to Crack the Paper

Classroom resources

Additional Resources