MA61028: Boundary Integral Methods
Jump to navigation
Jump to search
MA61028 | |||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Course name | Boundary Integral Methods | ||||||||||||||||||||||||
Offered by | Mathematics | ||||||||||||||||||||||||
Credits | 4 | ||||||||||||||||||||||||
L-T-P | 3-1-0 | ||||||||||||||||||||||||
Previous Year Grade Distribution | |||||||||||||||||||||||||
| |||||||||||||||||||||||||
Semester | Spring |
Syllabus
Syllabus mentioned in ERP
Prerequisite: Partial Differential EquationsGreen s function of Laplace equation in 1-d, 2-d and 3-d; Green s function of Helmholtz equation; Integral representation, Hypersingular integrals; Boundary element discretization; Generalized single and double layer representations; Boundary element collocation method, higher order collocation methods; Three node flat triangles, six node curved triangles; Inhomogeneous, nonlinear, and time dependent problems; Applications in axisymmetric fields, viscous flows, Navieer â Stokes and non-Newtonian flows; BEMLIB exercises.