ME60424: Non-Linear Vibrations
Jump to navigation
Jump to search
ME60424 | |||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Course name | Non-Linear Vibrations | ||||||||||||||||||||||||||
Offered by | Mechanical Engineering | ||||||||||||||||||||||||||
Credits | 4 | ||||||||||||||||||||||||||
L-T-P | 3-1-0 | ||||||||||||||||||||||||||
Previous Year Grade Distribution | |||||||||||||||||||||||||||
| |||||||||||||||||||||||||||
Semester | Spring |
Syllabus
Syllabus mentioned in ERP
3 - 1 - 0 : 4 CreditsPrerequsites: None Qualitative methods: Concept of fixed points and their stability. Poincare index. Limit cycles and Poincare Benedixon theorem. Different types of bifurcation. Quantitative methods: Methods with small parameter and methods without small parameter to analyze free and forced vibration problems. Application to Duffing oscillator, van-der Pol oscillator and Mathieu-Hill equation. Chaos: Sensitive dependence on initial conditions, Lyapunov exponent. Strange attractors and fractals. Different routes to chaos in a Duffing oscillator.
Concepts taught in class
Student Opinion
How to Crack the Paper
Just read the notes and practice tutorial problems